Reactive-site mutants of N-TIMP-3 that selectively inhibit ADAMTS-4 and ADAMTS-5: biological and structural implications

نویسندگان

  • Ngee H. Lim
  • Masahide Kashiwagi
  • Robert Visse
  • Jonathan Jones
  • Jan J. Enghild
  • Keith Brew
  • Hideaki Nagase
چکیده

We have reported previously that reactive-site mutants of N-TIMP-3 [N-terminal inhibitory domain of TIMP-3 (tissue inhibitor of metalloproteinases 3)] modified at the N-terminus, selectively inhibited ADAM17 (a disintegrin and metalloproteinase 17) over the MMPs (matrix metalloproteinases). The primary aggrecanases ADAMTS (ADAM with thrombospondin motifs) -4 and -5 are ADAM17-related metalloproteinases which are similarly inhibited by TIMP-3, but are poorly inhibited by other TIMPs. Using a newly developed recombinant protein substrate based on the IGD (interglobular domain) of aggrecan, gst-IGD-flag, these reactive-site mutants were found to similarly inhibit ADAMTS-4 and ADAMTS-5. Further mutations of N-TIMP-3 indicated that up to two extra alanine residues can be attached to the N-terminus before the Ki (app) for ADAMTS-4 and ADAMTS-5 increased to over 100 nM. No other residues tested at the [-1] position produced inhibitors as potent as the alanine mutant. The mutants N-TIMP-3(T2G), [-1A]N-TIMP-3 and [-2A]N-TIMP-3 were effective inhibitors of aggrecan degradation, but not of collagen degradation in both IL-1α (interleukin-1α)-stimulated porcine articular cartilage explants and IL-1α with oncostatin M-stimulated human cartilage explants. Molecular modelling studies indicated that the [-1A]N-TIMP-3 mutant has additional stabilizing interactions with the catalytic domains of ADAM17, ADAMTS-4 and ADAMTS-5 that are absent from complexes with MMPs. These observations suggest that further mutation of the residues of N-TIMP-3 which make unique contacts with these metalloproteinases may allow discrimination between them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alpha2-macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes.

Osteoarthritis is characterized by the loss of aggrecan and collagen from the cartilage extracellular matrix. The proteinases responsible for the breakdown of cartilage aggrecan include ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). Post-translational inhibition of ADAMTS-4/-5 activity may be important for maintaining normal homeostasis of aggrecan metabolism, and thus, any disruption t...

متن کامل

MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1

Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the stea...

متن کامل

Designing TIMP (tissue inhibitor of metalloproteinases) variants that are selective metalloproteinase inhibitors.

The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex wi...

متن کامل

Calcium pentosan polysulfate is a multifaceted exosite inhibitor of aggrecanases.

Degradation of the cartilage proteoglycan aggrecan is a key early event in the development of osteoarthritis. Adamalysin with thrombospondin motifs (ADAMTS) -4 and ADAMTS-5 are considered to be the main enzymes responsible for aggrecan breakdown, making them attractive drugs targets. Here we show that calcium pentosan polysulfate (CaPPS), a chemically sulfated xylanopyranose from beechwood, is ...

متن کامل

Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration

INTRODUCTION The longitudinal degradation mechanism of extracellular matrix (ECM) in the interbertebral disc remains unclear. Our objective was to elucidate catabolic and anabolic gene expression profiles and their balances in intervertebral disc degeneration using a static compression model. METHODS Forty-eight 12-week-old male Sprague-Dawley rat tails were instrumented with an Ilizarov-type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 431  شماره 

صفحات  -

تاریخ انتشار 2010